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Tolman’s nonlinearity of capillary waves
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A nonlinear theory of nanometer capillary waves is developed that takes curvature dependence of the surface
tension coefficien{Tolman’s nonlinearity into account. Estimations are given that indicate the importance of
Tolman’s nonlinearity for thermocapillary waves.
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[. INTRODUCTION nol surface. Thus, in our work we discuss a specific mecha-
nism that may lead to such a change in the effective surface
The ordinary theory of capillary waves on the surface of atension, and we call it Tolman’s nonlinearity.

liguid is based on the assumption that the surface tension is a This nonlinearity may also be essential for some applica-
constant, independent of the surface curvafdieHowever, tions in nanotechnology, for example, in creating wavelike
as it is well known, this assumption becomes incorrect forperiodic microstructures on a surfgded] and in the problem
large curvatures. Taking into account only two leading termspf electrohydrostatic instability14].
the dependence of the surface tension coefficient on the cur-

vature radiusR can be taken in the forf2] Il. MAIN FORMALISM
26 It is assumed that the velocity field in a liquid possesses
a=a(=®)| 1= =, (1) the property of potentiality,
whereé is the Tolman length and(<) is the surface tension Ad=0, @)

of the flat surface R— ). Thus, the change in the surface

tension becomes essential wiefies in the range of several R .
5. Estimation of the Tolman length was carried out in a 1 ne axiszis directed vertically up, and the uperturbed

number of theoretical and experimental workee, for ex- 19uid occupies the regioa<0. Capillary waves propagate
ample, Refs[3—6] and references therginlt can be both along axisx. Smcg the wave surfac&(x,t)_ls not spherical,
negative and positive, and its absolute value is about th&& Must generalize Ed1) for nonspherical surfaces. For

width of the monomolecular liquid-vapor interfacial layer tiS purpose, we substitute the facted/R in Eq. (1) by the
and lies in the nanometer range. mean curvature of the surface. With assump#gfox<1, it

In the present work, we consider the influence of depenY/€lds
dence(1) on the characteristics of capillary waves. This de- 5
pendence is most pronounced whBnamounts to several B iﬁ}ﬁ_f 3)
nanometers. R 2 yx?

The proposed approach is built on the frame of the model

of continuous ||qU|d, the molecular microstructure of the Me-Then the Lap|ace equation’ determining pressure under the

dium is neglected. Therefore, the wavelength is assumed tgurved surface of the liquidz=¢(x,t)), in account of Egs.
be sufficiently large in comparison with the intermolecular (1) and (3), takes the form

distance. It is also assumed that the wave period is larger

where® is velocity potential.

than the characteristic relaxation tirttee time of settled life 9P P P 2
of a molecule in the well of an intermolecular potentia)). p—=a(®) —+ 5( _2) , (4)
For shorter periods, the medium could not be treated as a at 28 X

liquid but rather as a solid one and, correspondingly, the

capillary waves must be substituted by the Rayleigh ones, agherep is the density of the liquid.

treated by Frenkdl7]. Expressing the velocity of the liquid in terms of potential
Obtained results may be of interest for the theory of ther?, we get a condition that connects E¢8) and (4):

mocapillary waves, widely investigated in the past years,

both experimentally[8—-10] and by molecular dynamics g 9d

simulations[11,17]. It was assumed in Ref8] that an en- E_Elzzi(xrt)' ©)

hancement of the effective surface tension for the shortest

thermocapillary waves may explain some unexpected experfFollowing the standard proceduf&], we assume here that

mental results obtained for an x-ray reflection on the methaamplitude A of the wave is small in comparison with its

length, i.e.,

*Email address: zon@niif.vsu.ru e=A/I\<]. (6)
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This allows us to substitute conditiar= {(x,t) in Egs.(4) *
and(5) by z=0. Instead of we introduceé=x—ut, where >, (pu®p— a(=)up?k)[c,sin(pké)—s, cog pké)]
u is the velocity of a capillary wave. This gives us the P=1

Laplace equations with nonlinear boundary condition:

=a(00)5m;:1 m?n2k3[ c.C,, sin(mkg)sin(nke)

D . D 0 L  odb @
97> 9&? 9§ dz|,_, .
—2¢S, sin(mké)cog nké) + s, s,cog nké)cogmké) .
, 0P ) D ( )5< a2c1>)2 (10)
u'p—=a(®)u —a(»
9% 9892 9892] |, Obviously, the ratio betwees, andc,; depends only on
As a second boundary conditigaver ¢), we take the peri- the choice of initial¢. For simplicity, we set
odic one _
$1=C1
D(EFN)=D(E). 8
(£+2) (&) ® and introduce dimensionless values
Boundary condition(8) allows us to seek the potential in _ _ o
the form Ch=Cn/C1, Sp,=Sp/Ci, C1=5=1,
°° ~ ~_ _ 172
D(£,2)= Y, cpe"™Pcognke) + S, s sin(nke). U=ulto,  Uo=(a(>)k/p) ™,
n=1 n=1
9) and the nonlinearity parameter
Taken in this form the potential satisfies E8); k=2w/\ is y=8k?cy/u.
the wave number.
Substituting this expansion into E(/) gives Then Eq.(10) becomes
2, P(U*=p)LCysin(pke) =S, cotpke)]
=y > m2n¥c,c, sin(mké)sin(nké) — 2¢,,s, sin(mké)cog nké) + s, cog nké) cog mké) |
mn=1
= ;1 m;ﬂ N?m2[ (CCnt SnSn) O M—N)KE+ (578, — CCr) COE M+ N)KE— 2CCr(SIN(M—N)kE+sin(m-+n)ké].
|
Equalizing the coefficients at corresponding harmonics in the Ejrst approximationEp=§p=0 Vp=3,
left-hand and right-hand sides yields
- 1-U2=4y(C,+'sy), 2(2-U?)s,=0,
~ ~ Y
—p(UP=p)Sy=5 2 nH{[(n+p)%Cy 5+ (n=p)° - e
n=1 1—u :4’}/(C2_Sz), 2(2_u )CZZ'}/
X(Enfp_Epfn)]En+[(n+ p)2§n+p gives the solution
+(n—p)2(Sh_p+Sp_n) IS0}, - - -
n—p T Sp—n)ISn} 02:%, $,=0, U~1—9?
(2= p)e = 2 =
P(U==p)cp 7,121 N+ p)“ensp Returning to dimensional values,
_p)2%. % S
+(N=P)*(Cp-n=Cnp)ISn- C1=S1, C2%%01 $,=0, u~(1—-99)uy. (11

Zero approximatiorc,=s,=0 Vp=2 givesu=1, i.e.,
u=ug, which coincides with a familiar relation for capillary The surface profil€(¢) can be represented in the form of
waves with constant surface tensidi]. the expansion similar to Eq9):
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FIG. 2. Velocity of capillary wave as a function of

positive and negativeS. Such a deformation of the wave
form and the change in velocity are similar to the well-
known Stokes wavd1]. However, in the case of Stokes
waves, the cause of nonlinearity is finite amplitude of the
wave in comparison with its wavelength, i.e., finiteness of
parametere, defined in Eq.(6). On the contrary, the cause
of, considered here, Tolman’s nonlinearity is the finiteness of
the curvature radius in comparison with the Tolman length,
FIG. 1. Wave forms with nonlinearity parametgr-+0.5. The o finiteness of parameter, defined in Eq(12). Note that
dashed line presents the first harmonic. e<1 does not necessarily imply<1, becausey depends
not only onA/\ but also oné/\ and multiplied by a rather

. large factor. Thus, for nanometer capillary wave, the de-
§(§,t)=nzl an Coink§)+r§1 by sin(nkg). scribed Tolman’'s nonlinearity, associated wigh can be at
least equally important as the familiar Stokes’ nonlinearity,
Then the second relation in E{) gives associated witlz.
In particular, Tolman’s nonlinearity can be essential for
an=s,/u, by=-cpl/u, thermally induced capillary waves on the surface of the lig-
o ) uid. Below, we estimate the characteristic value yoffor
and, taking into account relatiori$1), these waves using the method described in R&f,16].
. Let us assume the surface of the liquid to be a square in
L(£:0) =122, coské+ m/d) — (yau/2)sin(2ké). the x-y plane with sidel, and require/=0 at the boundary.

Thermally induced fluctuations of surface at an arbitrary mo-

Finally, we rewrite this expression for an arbitrary initial ment of time can be represented in the form of an expansion

phase over harmonics of capillary waves:
Y
{(&)=A| cogk({—&p) [+ —=cog 2k({—&o) ] N K
242 L{r)=2, Aymsinl —nx|sin —my],
n,m L L
and express the parametgrin terms of wave amplitudé
and length\, wheren,m=1,... N, N=L/I, | is an empirical constant
5 5 approximately equal to a characteristic intermolecular dis-
ok“A  (2m)° oA tance. For estimation we will neglect dependefieof sur-

(12) face tensiorny on the curvature. Then, the wol necessary

Tz 2
for creating this fluctuation is proportional to the excess of
Note that factor (2r)?%/\2~27.9 is rather large, hence non- surface areaS:
linear effects may be significant even for wavelengihs
much larger than the Tolman length
WzaAszf f dx dy[(1+ 25+ ) Y2-1]
Ill. RESULTS AND DISCUSSIONS

2
. . _a 2, 52, _ T S (024 m2)A2
Figure 1 demonstrates wave forrig) for different val- ~ dx dy(g+&y)= (N“+m9) AL,
. . . 2 8 n,m

ues ofy. The nonlinearity, considered here, leads to a defor-

mation of the original sinusoidal wave form and produces a

crest-trough asymmetry: fop>0, crests become narrower, and the probability of fluctuation is proportional to Boltz-
and troughs wider; while foyy<0, the deformation is oppo- mann’s factor expt W/kgT). In complete agreement with the
site. The wave velocity changes according to EGL1), as  equipartition theorem, this gives following amplitude vari-
presented in Fig. 2. Note that the velocity decreases both fances:
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4kgT wherel ., and\ ,in are some “cutoff” values for the wave-
(A2 )= — lengths(see discussion on their proper choice in R&g]).
am (nN“+m°) In combination with intrinsic interfacial widtlar,, which is

of the order of the molecular radius;; provides the total

In order to estimate the nonlinearity paramegemnote that it roughness of the liquid surface,

presents a characteristic value of the mean curvatgge (

+¢yy)/2 multiplied by the Tolman length, hence gf:g§+g§_ (16)
(¥?)~ X ((Lxt gyy)2>, (13  The values otr, can be extracted from experimental data on
x-ray reflection by liquid surfacg8—10]. The available ac-
where the overline denotes averaging oxgy: curacy is about 1—3 %, which is much better than it is needed
4 in order to find the above change in the effective surface
WZE(Z) > (n2+m?)2A2 | tension_. Thus, the abO\_/e theoretical analysis |s in principle,
CEWE AL A nm accessible for an experimental test by measuring the value of

atz and comparing it with theoretical values. However, in

which yields practice, we usually cannot clearly reveal the effect of the
52 [\ 4 considered nonlinearity, since it is partially obscured by the
(y?)~ Z(f) > (n?+ m?)2(A2,.) well-known problems of the proper choice ©f,;, anda, in
n,m Egs. (15 and (16). Nevertheless, the discrepancy between
2 o2 2 2 4 experimental and theoretical estimations obtained for metha-
T 8KgT 7°8°%kgT 2N

nol in Ref.[8] seems rather characteristic. The corresponding

al? 3 values for methanol are the following: the experimental
value ofo;=4.80+0.06 A; the theoretical value far., cal-

Expressingx in terms of intermolecular potential depth  culated with ags= (), is 0,=4.74+0.08 A; then Eq.

2 2
=———— > n’+m’~
al? n,m

a~€l1? [6], finally we get (16) gives foro,~0.7 A, which is considerably smaller than
2 the theoretically expected value near the molecular radius
(y?)~ kB_T(§> _ ruy=2.52 A. The authors of Ref8] suggested that such a
€\l discrepancy can be explained by a larger valuexgf; in

comparison witha(«), in complete accordance with our
consideration above. On the other hand, similar experimental
. . . . __and theoretical estimations for water and carbon tetrachloride
_ Obviously, these expressions give only a rough estimazyrieq out in the same work do not demonstrate any pro-
tion, since the main contribution t0y*) is associated with o nceq discrepancies. It is assumed in Reifthat a strong
wavelengths~|, for which the description in terms of cap- gimensional dependence of the surface tension and, hence, a
illary waves becomes inadequate, as mentioned in the Intrq—arge difference between,; and a(=) is a characteristic
duction. Nevertheless, this estimation suggests a significaljfﬁst for methanol. due to (ejistinct anisotropy of its molecule,
role of_the considered non!inearity in the dynamics of th.er'and is not so important for water and carbon tetrachloride
mocapillary waves. In particular, it means that an effectivey it their more isotropic molecules. This last assumption is
value of surface tensioa, for thermocapillary waves can 5154 indirectly confirmed by experimental results presented

significantly differ froma(=). Indeed, using Eqs1), (3),  in Ref.[17], which give a relatively larger value of the Tol-
and(13), an average change of surface tension for the whole, length for methanolg/l ~2.7 . . .3.5, than for water

Then taking, for examplekgT/e~0.5, 8/l ~1 obtain(y?)
~0.5.

ensemble of capillary waves can be estimated as Sll~17.. 28,
N Thus, the above consideration shows that taking into ac-
Aol ()~ (¥7), (14 count Tolman’s nonlinearity can be useful in the analysis of
and thus can approach values as large as 0.7. nanometer capillary wave dynamics, in particular, the ther-

In its turn, this change i.;; will lead to a corresponding Mocapillary ones.
change in the mean-square amplitude of thermocapillary sur-
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