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Tolman’s nonlinearity of capillary waves
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A nonlinear theory of nanometer capillary waves is developed that takes curvature dependence of the surface
tension coefficient~Tolman’s nonlinearity! into account. Estimations are given that indicate the importance of
Tolman’s nonlinearity for thermocapillary waves.
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I. INTRODUCTION

The ordinary theory of capillary waves on the surface o
liquid is based on the assumption that the surface tension
constant, independent of the surface curvature@1#. However,
as it is well known, this assumption becomes incorrect
large curvatures. Taking into account only two leading term
the dependence of the surface tension coefficient on the
vature radiusR can be taken in the form@2#

a5a~`!S 12
2d

R D , ~1!

whered is the Tolman length anda(`) is the surface tension
of the flat surface (R→`). Thus, the change in the surfac
tension becomes essential whenR lies in the range of severa
d. Estimation of the Tolman length was carried out in
number of theoretical and experimental works~see, for ex-
ample, Refs.@3–6# and references therein!. It can be both
negative and positive, and its absolute value is about
width of the monomolecular liquid-vapor interfacial lay
and lies in the nanometer range.

In the present work, we consider the influence of dep
dence~1! on the characteristics of capillary waves. This d
pendence is most pronounced whenR amounts to severa
nanometers.

The proposed approach is built on the frame of the mo
of continuous liquid, the molecular microstructure of the m
dium is neglected. Therefore, the wavelength is assume
be sufficiently large in comparison with the intermolecu
distance. It is also assumed that the wave period is la
than the characteristic relaxation time~the time of settled life
of a molecule in the well of an intermolecular potential@7#!.
For shorter periods, the medium could not be treated a
liquid but rather as a solid one and, correspondingly,
capillary waves must be substituted by the Rayleigh ones
treated by Frenkel@7#.

Obtained results may be of interest for the theory of th
mocapillary waves, widely investigated in the past yea
both experimentally@8–10# and by molecular dynamic
simulations@11,12#. It was assumed in Ref.@8# that an en-
hancement of the effective surface tension for the shor
thermocapillary waves may explain some unexpected exp
mental results obtained for an x-ray reflection on the met
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nol surface. Thus, in our work we discuss a specific mec
nism that may lead to such a change in the effective surf
tension, and we call it Tolman’s nonlinearity.

This nonlinearity may also be essential for some appli
tions in nanotechnology, for example, in creating wavel
periodic microstructures on a surface@13# and in the problem
of electrohydrostatic instability@14#.

II. MAIN FORMALISM

It is assumed that the velocity field in a liquid posses
the property of potentiality,

DF50, ~2!

whereF is velocity potential.
The axisz is directed vertically up, and the uperturbe

liquid occupies the regionz,0. Capillary waves propagat
along axisx. Since the wave surfacez(x,t) is not spherical,
we must generalize Eq.~1! for nonspherical surfaces. Fo
this purpose, we substitute the factor21/R in Eq. ~1! by the
mean curvature of the surface. With assumption]z/]x!1, it
yields

2
1

R
→ 1

2

]2z

]x2
. ~3!

Then the Laplace equation, determining pressure under
curved surface of the liquid„z5z(x,t)…, in account of Eqs.
~1! and ~3!, takes the form

r
]F

]t
5a~`!F ]2z

]x2
1dS ]2z

]x2D 2G , ~4!

wherer is the density of the liquid.
Expressing the velocity of the liquid in terms of potenti

F, we get a condition that connects Eqs.~2! and ~4!:

]z

]t
5

]F

]z
uz5z(x,t) . ~5!

Following the standard procedure@1#, we assume here tha
amplitude A of the wave is small in comparison with it
lengthl, i.e.,

«5A/l!1. ~6!
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This allows us to substitute conditionz5z(x,t) in Eqs. ~4!
and~5! by z50. Instead ofx we introducej5x2ut, where
u is the velocity of a capillary wave. This gives us th
Laplace equations with nonlinear boundary condition:

]2F

]z2
1

]2F

]j2
50; F2u

]z

]j
5

]F

]z G
z50

; ~7!

Fu3r
]F

]j
5a~`!u

]2F

]j]z
2a~`!dS ]2F

]j]zD
2G

z50

.

As a second boundary condition~over j), we take the peri-
odic one

F~j1l!5F~j!. ~8!

Boundary condition~8! allows us to seek the potential i
the form

F~j,z!5 (
n51

`

cnenkzcos~nkj!1 (
n51

`

snenkzsin~nkj!.

~9!

Taken in this form the potential satisfies Eq.~2!; k52p/l is
the wave number.

Substituting this expansion into Eq.~7! gives
th

y

05631
(
p51

`

~ru3p2a~`!up2k!@cp sin~pkj!2sp cos~pkj!#

5a~`!d (
m,n51

`

m2n2k3@cmcn sin~mkj!sin~nkj!

22cmsn sin~mkj!cos~nkj!1smsncos~nkj!cos~mkj!#.

~10!

Obviously, the ratio betweens1 and c1 depends only on
the choice of initialj. For simplicity, we set

s15c1

and introduce dimensionless values

c̃n5cn /c1 , s̃n5sn /c1 , c̃15 s̃151,

ũ5u/u0 , u05„a~`!k/r…1/2,

and the nonlinearity parameter

g5d k2c1 /u.

Then Eq.~10! becomes
(
p51

`

p~ ũ22p!@ c̃p sin~pkj!2 s̃p cos~pkj!#

5g (
m,n51

`

m2n2@ c̃mc̃n sin~mkj!sin~nkj!22c̃ms̃n sin~mkj!cos~nkj!1 s̃ms̃n cos~nkj!cos~mkj!#

5
g

2 (
m,n51

`

n2m2@~ c̃mc̃n1 s̃ns̃n!cos~m2n!kj1~ s̃ns̃n2 c̃mc̃n!cos~m1n!kj22c̃mc̃n~sin~m2n!kj1sin~m1n!kj#.
f

Equalizing the coefficients at corresponding harmonics in
left-hand and right-hand sides yields

2p~ ũ22p!s̃p5
g

2 (
n51

`

n2$@~n1p!2c̃n1p1~n2p!2

3~ c̃n2p2 c̃p2n!# c̃n1@~n1p!2s̃n1p

1~n2p!2~ s̃n2p1 s̃p2n!# s̃n%,

2p~ ũ22p!c̃p5g (
n51

`

n2@~n1p!2c̃n1p

1~n2p!2~ c̃p2n2 c̃n2p!# s̃n .

Zero approximationc̃p5 s̃p50 ;p>2 gives ũ51, i.e.,
u5u0, which coincides with a familiar relation for capillar
waves with constant surface tension@1#.
e First approximation:c̃p5 s̃p50 ;p>3,

12ũ254g~ c̃21 s̃2!, 2~22ũ2!s̃250,

12ũ254g~ c̃22 s̃2!, 2~22ũ2!c̃25g

gives the solution

c̃25
g

2
, s̃250, ũ'12g2.

Returning to dimensional values,

c15s1 , c2'
g

2
c1 s250, u'~12g2!u0 . ~11!

The surface profilez(j) can be represented in the form o
the expansion similar to Eq.~9!:
1-2
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z~j,t !5 (
n51

`

an cos~nkj!1 (
n51

`

bn sin~nkj!.

Then the second relation in Eq.~7! gives

an5sn /u, bn52cn /u,

and, taking into account relations~11!,

z~j,t !5A2a1 cos~kj1p/4!2~ga1/2!sin~2kj!.

Finally, we rewrite this expression for an arbitrary initi
phase

z~j,t !5AS cos@k~j2j0!#1
g

2A2
cos@2k~j2j0!# D

and express the parameterg in terms of wave amplitudeA
and lengthl,

g5
d k2A

A2
5

~2p!2

A2

dA

l2
. ~12!

Note that factor (2p)2/A2'27.9 is rather large, hence non
linear effects may be significant even for wavelengthsl
much larger than the Tolman lengthd.

III. RESULTS AND DISCUSSIONS

Figure 1 demonstrates wave formsz(j) for different val-
ues ofg. The nonlinearity, considered here, leads to a de
mation of the original sinusoidal wave form and produce
crest-trough asymmetry: forg.0, crests become narrowe
and troughs wider; while forg,0, the deformation is oppo
site. The wave velocityu changes according to Eq.~11!, as
presented in Fig. 2. Note that the velocity decreases both

FIG. 1. Wave forms with nonlinearity parameterg560.5. The
dashed line presents the first harmonic.
05631
r-
a
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positive and negatived. Such a deformation of the wav
form and the change in velocity are similar to the we
known Stokes wave@1#. However, in the case of Stoke
waves, the cause of nonlinearity is finite amplitude of t
wave in comparison with its wavelength, i.e., finiteness
parameter«, defined in Eq.~6!. On the contrary, the caus
of, considered here, Tolman’s nonlinearity is the finiteness
the curvature radius in comparison with the Tolman leng
i.e., finiteness of parameterg, defined in Eq.~12!. Note that
«!1 does not necessarily implyg!1, becauseg depends
not only onA/l but also ond/l and multiplied by a rather
large factor. Thus, for nanometer capillary wave, the d
scribed Tolman’s nonlinearity, associated withg, can be at
least equally important as the familiar Stokes’ nonlinear
associated with«.

In particular, Tolman’s nonlinearity can be essential f
thermally induced capillary waves on the surface of the l
uid. Below, we estimate the characteristic value ofg for
these waves using the method described in Refs.@15,16#.

Let us assume the surface of the liquid to be a squar
the x-y plane with sideL, and requirez50 at the boundary.
Thermally induced fluctuations of surface at an arbitrary m
ment of time can be represented in the form of an expans
over harmonics of capillary waves:

z~r !5(
n,m

Anm sinS p

L
nxD sinS p

L
myD ,

where n,m51, . . . ,N, N5L/ l , l is an empirical constan
approximately equal to a characteristic intermolecular d
tance. For estimation we will neglect dependence~1! of sur-
face tensiona on the curvature. Then, the workW necessary
for creating this fluctuation is proportional to the excess
surface areaDS:

W5a DS5E E dx dy@~11zx
21zy

2!1/221#

'
a

2E E dx dy~zx
21zy

2!5
ap2

8 (
n,m

~n21m2!Anm
2 ,

and the probability of fluctuation is proportional to Boltz
mann’s factor exp(2W/kBT). In complete agreement with th
equipartition theorem, this gives following amplitude va
ances:

FIG. 2. Velocity of capillary wave as a function ofg.
1-3
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^Anm
2 &5

4kBT

ap2~n21m2!
.

In order to estimate the nonlinearity parameterg, note that it
presents a characteristic value of the mean curvaturezxx
1zyy)/2 multiplied by the Tolman length, hence

^g2&;d2^~zxx1zyy!
2&, ~13!

where the overline denotes averaging overx,y:

~zxx1zyy!
25

1

4 S p

L D 4

(
n,m

~n21m2!2Anm
2 ,

which yields

^g2&;
d2

4 S p

L D 4

(
n,m

~n21m2!2^Anm
2 &

5
p2d2kBT

aL4 (
n,m

n21m2'
p2d2kBT

aL4

2N4

3
.

Expressinga in terms of intermolecular potential depthe,
a;e/ l 2 @6#, finally we get

^g2&;
kBT

e S d

l D
2

.

Then taking, for example,kBT/e;0.5, d/ l;1 obtain ^g2&
;0.5.

Obviously, these expressions give only a rough estim
tion, since the main contribution tôg2& is associated with
wavelengths; l , for which the description in terms of cap
illary waves becomes inadequate, as mentioned in the In
duction. Nevertheless, this estimation suggests a signifi
role of the considered nonlinearity in the dynamics of th
mocapillary waves. In particular, it means that an effect
value of surface tensionae f f for thermocapillary waves can
significantly differ froma(`). Indeed, using Eqs.~1!, ~3!,
and~13!, an average change of surface tension for the wh
ensemble of capillary waves can be estimated as

Da/a~`!;A^g2&, ~14!

and thus can approach values as large as 0.7.
In its turn, this change inae f f will lead to a corresponding

change in the mean-square amplitude of thermocapillary
face fluctuations@8#:

sc5^z2&'
kBT

2pae f f
lnFlmax

lmin
G , ~15!
05631
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wherelmax andlmin are some ‘‘cutoff’’ values for the wave
lengths~see discussion on their proper choice in Ref.@16#!.
In combination with intrinsic interfacial widthsp , which is
of the order of the molecular radius,sc provides the total
roughness of the liquid surface,

s t
25sc

21sp
2 . ~16!

The values ofs t can be extracted from experimental data
x-ray reflection by liquid surfaces@8–10#. The available ac-
curacy is about 1–3 %, which is much better than it is nee
in order to find the above change in the effective surfa
tension. Thus, the above theoretical analysis is, in princi
accessible for an experimental test by measuring the valu
s t

2 and comparing it with theoretical values. However,
practice, we usually cannot clearly reveal the effect of
considered nonlinearity, since it is partially obscured by
well-known problems of the proper choice oflmin andsp in
Eqs. ~15! and ~16!. Nevertheless, the discrepancy betwe
experimental and theoretical estimations obtained for me
nol in Ref.@8# seems rather characteristic. The correspond
values for methanol are the following: the experimen
value ofs t54.8060.06 Å; the theoretical value forsc , cal-
culated with ae f f5a(`), is sc54.7460.08 Å; then Eq.
~16! gives forsp'0.7 Å, which is considerably smaller tha
the theoretically expected value near the molecular rad
r M52.52 Å. The authors of Ref.@8# suggested that such
discrepancy can be explained by a larger value ofae f f in
comparison witha(`), in complete accordance with ou
consideration above. On the other hand, similar experime
and theoretical estimations for water and carbon tetrachlo
carried out in the same work do not demonstrate any p
nounced discrepancies. It is assumed in Ref.@8# that a strong
dimensional dependence of the surface tension and, hen
large difference betweenae f f and a(`) is a characteristic
just for methanol, due to distinct anisotropy of its molecu
and is not so important for water and carbon tetrachlor
with their more isotropic molecules. This last assumption
also indirectly confirmed by experimental results presen
in Ref. @17#, which give a relatively larger value of the To
man length for methanol,d/ l;2.7 . . .3.5, than for water,
d/ l;1.7 . . .2.8.

Thus, the above consideration shows that taking into
count Tolman’s nonlinearity can be useful in the analysis
nanometer capillary wave dynamics, in particular, the th
mocapillary ones.
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